Sesquiterpenoids from Senecio argunensis

by Wei-Dong Xie*a), Yu-Fang Niua), Jian-Jun Huanga), and Kyung-Ho Row*b)

^a) Marine College, Shandong University at Weihai, Weihai 264209, P. R. China (phone: +86-631-5688303; fax: +86-631-5688303; e-mail: wdxie@sdu.edu.cn)
^b) Department of Chemical Engineering, Inha University, Incheon 402-751, Korea

(phone: +82-32-8607470; fax: +82-32-8720959; e-mail: rowkho@inha.ac.kr)

Investigation of unpolar extracts from the aerial parts of *Senecio argunensis* afforded two new sesquiterpenoids, 1β -hydroxyeudesma-4,11-dien-15-al (1) and 4(15)-cadinene- 5α ,10 α -diol, (2) as well as six known compounds, 3-8. The structures of all isolates were elucidated on the basis of extensive analyses of spectroscopic data and comparison with literature data.

Introduction. – Senecio is a genus of the daisy family (Asteraceae), with *ca.* 160 species widely distributed in China, of which several species are used as traditional Chinese medicine (TCM). Senecio argunensis TURCZ. is a perennial herb mainly occurring in north and northeast China, Mongolia, Korea Peninsula, and Russia [1]. Its roots and aerial parts are used for the treatment of sore throat, conjunctivitis, dysentery, and snake bites, *etc.* [2]. Earlier phytochemical investigations of this species mainly focused on its polar constituents, such as pyrrolizidine alkaloids [3], flavonoid alkaloids [4], and biflavonoid [5], monoterpene [6], and tetrahydronaphthalene derivatives [6]. During our systematic investigation of *Senecio* species scattered in northeast China, we have examined the unpolar extracts from the aerial parts of *S. argunensis*. Recently, several cyclohexanone derivatives were isolated by our research group [7]. Here, we report the isolation and structure elucidation of two new and six known sesquiterpenoids.

Results and Discussion. – Through the sequential purification of CHCl₃-soluble parts of MeOH extracts of *S. argunensis*, two new sesquiterpenoids, 1 β -hydroxyeudesma-4,11-dien-15-al (1) and 4(15)-cadinene-5 α ,10 α -diol (2), as well as six known sesquiterpenoids, 10 α -hydroxycardin-4-en-15-al (3) [8], eudesm-4(15)-ene-1 β ,5 α -diol (4) [9], eudesm-4(15)-ene-1 β ,6 α -diol (5) [10], eudesm-4(15)-ene-1 β ,7 α -diol (6) [11], 10 α -hydroxyoplopan-4-one (7) [12], and aromadendrane-4 β ,10 β -diol (8) [13], were isolated from the aerial parts of this plant. The known isolates were identified by comparison of their spectroscopic data with those reported in the literature.

Compound **1** was obtained as colorless oil. The IR spectrum showed absorption bands of OH (3446 cm⁻¹), C=C (1662 cm⁻¹), and C=O (1720 cm⁻¹). The molecular formula was determined to be $C_{15}H_{22}O_2$ by the *quasi*-molecular-ion peak at m/z235.1693 ($[M + H]^+$) in the HR-ESI-MS. The ¹H-NMR spectrum (*Table*) displayed signals of two tertiary Me groups at $\delta(H)$ 1.77 (br. s) and 1.18 (s), of one characteristic

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Table. ¹*H*- and ¹³*C*-*NMR* (DEPT) Data of **1** and **2**^a). δ in ppm, J in Hz.

	1			2	
	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(H)$	$\delta(C)$
H-C(1)	3.51 (dd, J = 12.0, 3.5)	76.9	C(1)	1.65 (ddd, J = 12.0, 11.5, 3.5)	44.9
$H_a - C(2)$	$1.62 - 1.68 (m)^{b}$	26.0	$CH_{2}(2)$	1.00 - 1.06 (m), 1.95 - 2.01 (m)	27.3
$H_b-C(2)$	1.34 - 1.43 (m)				
$H_a - C(3)$	2.52 - 2.57 (m)	22.6	$H_a - C(3)$	2.14 (ddd, J = 13.5, 3.5, 3.0)	29.4
$H_b - C(3)$	1.76 - 1.83 (m)		$H_b - C(3)$	2.28 - 2.35(m)	
C(4)		131.4	C(4)		150.7
C(5)		162.2	H-C(5)	4.22 (br. $d, J = 2.0$)	71.6
$H_a - C(6)$	3.41 (br. $d, J = 13.5$)	29.1	H-C(6)	1.14 (ddd, J = 11.5, 11.0, 2.0)	45.8
$H_b - C(6)$	2.15 - 2.19(m)				
H-C(7)	2.11 - 2.16(m)	46.5	H-C(7)	1.43 - 1.49 (m)	42.0
CH ₂ (8)	$1.62 - 1.70 \ (m)^{b}$	26.6	$H_a - C(8)$	1.54 - 1.61 (m)	21.1
			$H_{\rm b} - C(8)$	0.96 - 1.00 (m)	
$H_a - C(9)$	2.02 - 2.08 (m)	38.2	$H_a - C(9)$	$1.71 \ (ddd, J = 12.5, 3.5, 3.0)$	42.2
$H_{\rm b}-C(9)$	1.55 - 1.61 (m)		$H_{\rm b}-C(9)$	1.36 (ddd, J = 12.5, 12.5, 3.5)	
C(10)		41.4	C(10)		72.9
C(11)		148.7	H - C(11)	2.01 - 2.06 (m)	25.5
$CH_{2}(12)$	4.77 (br. s)	109.4	Me(12)	0.70 (d, J = 7.0)	15.4
Me(13)	1.77 (br. s)	20.6	Me(13)	0.88 (d, J = 7.0)	21.6
Me(14)	1.18 (s)	17.6	Me(14)	0.99(s)	21.0
H - C(15)	10.18(s)	190.5	$H_{a} - C(15)$	4.68 (br. s)	109.6
			$H_{b} - C(15)$	4.76 (br. s)	

 $^{a})$ Recorded in CDCl_3 at 500 MHz for $^{1}\text{H-NMR}$ and at 125 MHz for $^{13}\text{C-NMR}$ and DEPT. $^{b})$ Overlapping signals.

terminal olefinic CH₂ group at $\delta(H)$ 4.77 (br. *s*), of an O-bearing CH group at $\delta(H)$ 3.51 (*dd*, *J* = 12.0, 3.5), and of an aldehyde H-atom at $\delta(H)$ 10.18 (*s*). The ¹³C-NMR (DEPT) spectrum of **1** (*Table*) showed the presence of 15 C-atoms, including an

aldehyde CO group (δ (C) 190.5), two terminal olefinic C-atoms (δ (C) 148.7 (s) and 109.4 (t)), two tetrasubstituted olefinic C-atoms (δ (C) 131.4 (C(4)) and 162.2 (C(5))), and an O-bearing CH group (δ (C) 76.9 (d)). By comparison of the above data with those of a very similar sesquiterpenoid, 2α -hydroxyeudesma-4,11-dien-15-al [14], compound **1** was determined as 1 β -hydroxyeudesma-4,11-dien-15-al.

Careful examination of the HMBCs supported the basic C-framework of 1 as an eudesmane-type sesquiterpenoid (Fig. 1). The locations of the functional groups were confirmed as follows: the HMBC $\delta(H)$ 10.18 (H–C(15))/ $\delta(C)$ 131.4 (C(4)) suggested conjugation of the tetrasubstituted C=C bond with the aldehyde CO group. The correlations $\delta(H)$ 1.18 (Me(14))/ $\delta(C)$ 162.2 (C(4)), 38.2 (C(9)), 76.9 (C(1)), and 41.4 (C(10)) confirmed the position of a tetrasubstituted C=C bond between C(4) and C(5), and the location of an OH group at C(1). The correlations $\delta(H)$ 1.77 (Me(13))/ $\delta(C)$ 148.7 (C(11)), 109.4 (C(12)), and 46.5 (C(7)) indicated the terminal C=CH₂ bond to be located between C(11) and C(12). The configuration of 1 was determined on the basis of the analysis of NOESY correlations and coupling constants (Fig. 1). The NOESY correlations observed between Me(14) and $H_a - C(6)$ demonstrated that these groups are positioned on the same face of the molecule. The NOESY correlation peaks $H-C(1)/H_b-C(9)$ and $H_b-C(9)/H-C(7)$ suggested that the relative configurations of H-C(1) and H-C(7) are both α . Furthermore, the large coupling constant of H-C(1)with H-C(2) $(J(1\alpha,2\beta) = 12.0)$ also suggested H-C(1) to be in an axial orientation, which means that the OH group at C(1) has β orientation. From these data, the structure of **1** was established as 1β -hydroxyeudesma-4,11-dien-15-al. The absolute configuration of 1 was not determined.

Fig. 1. Key HMBC and NOESY correlations for 1

The HR-ESI-MS of compound **2** showed a *quasi*-molecular-ion peak at m/z 256.2277 ([M + NH₄]⁺), in accord with the molecular formula C₁₅H₂₆O₂. The IR spectrum showed absorption bands of OH (3375 cm⁻¹) and C=C (1654 cm⁻¹). In the ¹H-NMR spectrum (*Table*), the signals of two secondary Me groups at δ (H) 0.70 (d, J = 7.0) and 0.88 (d, J = 7.0), coupled to a CH group at δ (H) 2.01 – 2.06 (m), suggested the presence of an ⁱPr group. The ¹H-NMR signals at δ (H) 4.68 (br. s) and 4.76 (br. s), and the corresponding C-atom signals at δ (C) 109.6 (t) and 150.7 (s) were assigned to an exocyclic C=CH₂ group. In addition, the ¹H-NMR spectrum (*Table*) also showed the presence of a tertiary Me group (δ (H) 0.99 (s)), and an O-bearing CH group (δ (H) 4.22 (br. d, J = 2.0)). The quaternary C-atom signal at δ (C) 72.9 in the ¹³C-NMR spectrum indicated the presence of a quaternary OH group. Detailed analysis of 2D-NMR (*Fig. 2*) enabled us to establish the structure of **2** as 4(15)-cadinene-5 α ,10 α -diol.

Fig. 2. Partial structure resolved by ¹H,¹H-COSY, key HMBC, and NOESY correlations for 2

Two closely related sesquiterpenoids, 4(15)-cadinene- 10β -ol (millecrol B) [15] and 4(15)-cadinene- 6β , 10α -diol (isocalamenediol) [16], have been previously reported as natural products.

The chemical shifts of each H-bearing C-atom and the corresponding H-atoms were unambiguously assigned by HMQC (Table). The ¹H,¹H-COSY spectrum indicated the connectivities of C(1) to C(3), and C(5) to C(9) (Fig. 2). The ¹H, ¹H-COSY correlation H-C(1)/H-C(6) and allylic coupling correlation $CH_2(15)/CH_2(3)$ were also observed. The singlet of the Me group at $\delta(H) 0.99(s)$ and the HMBCs $\delta(H) 0.99(Me(14))/\delta(C)$ 44.9 (H-C(1)), 72.9 (C(10)), and 42.0 (CH₂(9)) suggested that both Me(14) and quaternary OH group are located on the quaternary C-atom (C(10)). The HMBCs $\delta(H)$ 4.68 $(H_a - C(15))/\delta(C)$ 71.6 $(H - C(5)), \delta(H)$ 4.76 $(H_b - C(15))/\delta(C)$ 71.6 (H-C(5)), and $\delta(H)$ 4.22 $(H-C(5))/\delta(C)$ 29.4 $(CH_2(3))$, 44.9 (H-C(1)), 109.6 $(CH_2(15))$ confirmed the OH group to be attached to C(5). In the ¹H-NMR spectrum (*Table*), the large coupling constants of H–C(1) with H–C(6) ($J(1\alpha,6\beta)=11.5$), and H-C(6) with H-C(7) $(J(6\beta,7\alpha) = 11.0)$ suggested axial orientations of H-C(1), H-C(6), and H-C(7). Therefore, the two rings are *trans*-fused with the ⁱPr moiety in β orientation (Fig. 2), which was further confirmed by the NOESY correlation H-C(1)/H-C(7). The NOESY correlation peak observed between H-C(6) and Me(14)indicated that both H-C(6) and Me(14) were in β orientation (Fig. 2). The α configuration of the OH group at C(5) was deduced from the small coupling constant of H-C(5) with H-C(6) $(J(5\beta,6\beta)=2.0)$ [16]. The constitutional formula of **2** is the same as that of 5α , 10α -dihydroxymuurol-4(15)-ene [17]. The differences of chemical shifts in the ¹H- and ¹³C-NMR spectra between these two compounds result from the different relative configurations. In the structure of 5α , 10α -dihydroxymuurol-4(15)ene, the H-atoms at the ring junction are *cis* to each other [17], in contrast to the *trans*junction in 2. The absolute configuration of 2 was not determined due to the small amount of isolated material.

This project was financially supported by the *Natural Science Foundation of Shandong Province*, P. R. China (No. ZR2009CM017) and the *Technology Foundation of Weihai* (2008GGA002008-0625121505).

Experimental Part

General. TLC: silica gel GF_{254} (Qingdao Marine Chemical Factory, P. R. China). Column chromatography (CC): silica gel G (SiO₂; 200–300 and 300–400 mesh, Qingdao Marine Chemical Factory, P. R. China); silica gel C-18 (Merck). Optical rotations: Perkin-Elmer 341 polarimeter. IR

Spectra: *Bruker Vertex 70* FT-IR spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR (DEPT), and 2D-NMR Spectra: *Bruker AVANCE 500* spectrometer; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. HR-ESI-MS: *Bruker APEX-II* spectrometer.

Plant Material. The aerial parts of *S. argunensis* were collected from Changbai Mountain, Tonghua, Jilin Province, P. R. China, in September 2008, and identified by Associate Prof. *Hong Zhao* (Marine College, Shandong University at Weihai). A voucher specimen (No. CB200810) was deposited with the herbarium in the Laboratory of Botany, Marine College, Shandong University at Weihai.

Extraction and Isolation. The air-dried aerial parts of Senecio argunensis (9.8 kg) were powdered and extracted with MeOH three times (7 d each time) at r.t. The solvent was evaporated, and the residue (1.2 kg) was suspended in hot H₂O (60°, 41). This suspension was extracted successively with hexane and CHCl₃. The CHCl₃-soluble fraction was concentrated to afford a residue (125 g), which was subjected to CC (SiO₂, 200-300 mesh, 1400 g; hexane/acetone 10:1, 5:1, 3:1, and 1:1): Frs. 1-4. Fr. 1 (with hexane/ acetone 10:1; 13.5 g) was subjected to CC (SiO₂, 300-400 mesh, 150 g; hexane/AcOEt 15:1, 10:1, 5:1, and 2:1) to afford subfractions $f_1 - f_4$. Subfr. f_1 (hexane/AcOEt 15:1; 3.0 g) was subjected to CC (SiO₂; hexane/CHCl₃ 3:1) to yield a mixture, which was further purified by low-pressure CC (C-18; MeOH/ H_2O 3:2) to give 1 (6 mg) and 3 (8 mg). Subfr. f_2 (hexane/AcOEt 10:1; 1.2 g) was purified by CC (hexane/AcOEt 6:1) and prep. TLC (CHCl₃/acetone 9:1) to yield $4 (R_f 0.42; 12 \text{ mg})$. Subfr. f_3 (hexane/ AcOEt 5:1; 2.2 g) was separated by CC (hexane/acetone 8:1) and low-pressure CC (C-18; MeOH/H₂O 1:1) to give 5 (25 mg). Subfr. f_4 (hexane/AcOEt 2:1; 1.0 g) was purifed by CC (hexane/acetone 6:1) and low-pressure CC (C-18; MeOH/H₂O 1:1) to give 7 (12 mg). Fr. 2 (with hexane/acetone 5:1; 12.5 g) was subjected to CC (SiO₂, 300-400 mesh, 150g; hexane/AcOEt 8:1, 4:1, 2:1, and 1:1) to afford subfractions $f_5 - f_8$. Subfr. f_5 (hexane/AcOEt 8:1; 2.2 g) was subjected to CC (SiO₂; hexane/AcOEt 6:1), and further purified by low-pressure CC (C-18; MeOH/H₂O 1:1) to give 2 (3 mg). Subfr. f_7 (hexane/ AcOEt 2:1; 1.6 g) was purified by repeated CC (hexane/acetone 8:1, 4:1) to afford 6 (9 mg) and 8 (4 mg). There is no interesting compound in Fr. 3 (with hexane/acetone 3:1;28 g) and Fr. 4 (with hexane/ acetone 1:1; 37 g).

 1β -Hydroxyeudesma-4,11-dien-15-al (= rel-(4R,4aR,7R)-2,3,4,4a,5,6,7,8-Octahydro-4-hydroxy-4amethyl-7-(1-methylethenyl)naphthalene-1-carbaldehyde; **1**): Colorless oil. [a]₂₀²⁰ = +88 (c = 0.4, CHCl₃). IR (film): 3446, 3081, 2926, 2855, 1720, 1662, 1614, 1453, 1364, 1026, 884, 800. ¹H- and ¹³C-NMR: see Table. HR-ESI-MS: 235.1690 ([M + H]⁺, C₁₅H₂₃NO₂⁺; calc. 235.1693).

4(15)-Cadinene- 5α , 10α -diol (=rel-(1R,4S,4aS,5S,8aR)-Decahydro-1-methyl-6-methylidene-4-(1-methylethenyl)naphthalene-1,5-diol; **2**): Colorless oil. $[\alpha]_D^{20} = -81$ (c = 0.2, CHCl₃). IR (film): 3375, 3064, 2926, 2859, 1654, 1467, 1373, 1258, 1031. ¹H- and ¹³C-NMR: see *Table*. HR-ESI-MS: 256.2277 ($[M + NH_4]^+$, C₁₅H₃₀NO₂⁺; calc. 256.2271).

REFERENCES

- 'Flora Republicae Popularis Sinicae', Eds. Y. Jiang, B. T. Li, Institutum Academiae Sience Press, Beijing, 1979, Vol. 77, p. 225.
- [2] 'Zhonghua Bencao', Ed. State Administration of Medicine and Drug of P. R. China, Shanghai Science and Technology Press, Shanghai, 1999, Vol. 2, p. 492.
- [3] K. Liu, E. Röder, Phytochemistry 1991, 30, 1303.
- [4] N. Li, L. Shao, C.-F. Zhang, M. Zhang, J. Asian Nat. Prod. Res. 2008, 10, 1143.
- [5] C. F. Zhang, N. Li, L. Li, M. Zhang, Chin. Chem. Lett. 2009, 20, 598.
- [6] N. Li, C. F. Zhang, M. Zhang, J. China Pharm. Univ. 2008, 39, 20.
- [7] Y. Q. Tian, Y. F. Niu, T. Shen, C. W. Weng, W. D. Xie, K. H. Row, J. Chem. Res. 2010, 1, 25.
- [8] T. Iijima, Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 2003, 51, 545.
- [9] J. C. Liao, Q. X. Zhu, X. P. Yang, Z. J. Jia, J. Chin. Chem. Soc. 2002, 49, 129.
- [10] T. Ohmoto, K. Ikeda, S. Nomura, M. Shimizu, S. Saito, Chem. Pharm. Bull. 1987, 35, 2272.
- [11] Z. Sun, B. Chen, S. Zhang, C. Hu, J. Nat. Prod. 2004, 67, 1975.
- [12] K. H. Lee, S. U. Choi, K. R. Lee, Arch. Pharmacal Res. 2005, 28, 280.
- [13] T.-S. Wu, Y.-Y. Chan, Y.-L. Leu, Chem. Pharm. Bull. 2000, 48, 357.

- [14] J. Jakupovic, S. Hafez, F. Bohlmann, X. A. Dominguez, *Phytochemistry* 1988, 27, 3881.
- [15] J. Pika, D. J. Faulkner, *Tetrahedron* **1994**, *50*, 3065.
 [16] K. Zawamaki, M. Kuroyanagi, *Phytochemistry* **1996**, *43*, 1175.
- [17] K.-S. Ngo, W.-T. Wong, G. D. Brown, J. Nat. Prod. 1999, 62, 549.

Received March 17, 2010